8722. com

今天是2019年6月5日 星期三,欢迎光临本站 

公司快讯

激光制造技术应用

文字:[大][中][小] 手机页面二维码 2018/4/10     浏览次数:    
QQ


  激光制造技术与传统的制造技术相比,其突出的优势主要体现在以下几个方面:

  (1)特种材料特殊要求的加工

  激光焊接与大多数传统的焊接方法相比具有突出的优点。激光能量的高度集中和加热、冷却过程的极其迅速,可破坏一些难熔金属表面的应力阈值,或使高导热系数和高熔点金属快速熔化,完成某些特种金属或合金材料的焊接,而且在激光焊接过程中无机械接触,容易焊接部位不因热压缩而变形,还排除了无关物质落入焊接部位的可能;如果采用大焦深的激光系统,还可实现特殊场合下的焊接,比如,由软件控制的需隔离的远距离在线焊接、高精密防污染的真空环境焊接等;在不发生材料表面蒸发的情况下可熔化最大数量的物质,达到高质量的焊接。以上特点是传统的焊接工具与方法很难能做到的。目前,在汽车、国防、航空航天等一些特殊行业,已普遍采用激光焊接技术。例如欧洲一些国家,对高档汽车车壳与底座、飞机机翼、航天器机身等一些特种材料的焊接,激光的应用已基本取代了传统的焊接工具和方法。

  (2)特殊精度的加工制造

  这里指的高精度除通常意义下的定位外,主要还体现在材料内部热传导效应量级上的控制。激光的显著特点之一,就是可采取连续和脉冲方式输出。以固体的钻孔与切割为例,激光能量高度集中,以及加热、冷却速度快的特点可实现传统技术达到的普遍要求,加工属热化学过程。这里要突出的是,通过脉冲式激光辐射可达到接近“冷”加工的光化学动力过程。一方面选择脉冲的时间宽度,使得材料内的热传导过程和热化学反应来不及发生;另一方面通过控制激光的功率密度和脉冲计数,按要求达到确定的去除深度,从而实现高精度的“线”切割和“点”钻孔加工。欧美一些国家在许多特殊要求的领域和产业中已普遍采用这种脉冲光制造技术。

  (3)微细加工制造

  激光微细加工技术成功的应用是在20世纪后半叶发展起来的微电子学领域。激光微细加工作为微电子集成工艺中的单元微加工技术之一,现已形成固定模式并投入规模化生产中。除此之外,能突显其优势的领域还有精密光学仪器的制造、高密度信息的写入存储、生物细胞组织的医疗等。选择适当波长的激光,通过各种优化工艺和逼近衍射极限的聚焦系统,获得高质量光束、高稳定性、微小尺寸焦斑的输出。利用其锋芒尖利的“光刀”特性,进行高密微痕的刻制、高密信息的直写;也可利用其光阱的“力”效应,进行微小透明球状物的夹持操作。例如,高精密光栅的刻制(精密光刻);通过CAD/CAM软件进行仿真图案(或文字)和控制,实现高保真打标;利用光阱的“束缚力”,对生物细胞执行移动操作(生物光镊)。值得一提的是,高密度信息的激光记录和微细机械零部件的光制造。

  无论是数字记录或是扫描记录,还是图像与文字的模拟记录,激光记录方法(光刻)都具有特别的优势并取得了重要突破,以数字记录为例:①信息记录密度高(107~108bit/cm2以上),刻录槽宽0.7μm、深0.1μm,比磁记录密度提高两个数量级以上;②记录、检索、读出速度快,单波道达50Mbit/s,多波道可达320Mbit/s;信息的检索和读出速度远远小于1 秒;③成本低、使用寿命长。在微细机械零部件的光制造方面,最近几年国外已将其列为攻关项目,成为未来高新技术前期研究的热点。日本采用激光技术,制造出微米量级的三维“纳米牛”,这说明日本在微纳量级的三维激光微成型机制上已经取得了巨大的进展。北京工业大学激光工程研究院应用准分子激光,通过掩模方法,已经加工出10齿/50μm和108齿/500μm的微型齿轮。

  (4)高效的自动流程加工制造

  由于激光输出的可控制性,使激光制造过程能够通过软件实行自动化流程的智能控制。根据生产性质的需要,既可实行加工台的定位控制亦可通过激光的光纤传输实行加工头的机器手定位控制,从而实现高效的自动化、智能化激光制造。比如,汽车车身覆盖件的三维定位切割、车身骨构架的焊接、齿轮盘及其他零部件的焊接加工等,已形成激光加工、组装一条龙的生产线。

  微纳光制造及其相关技术,是当前国际竞争的主要领域,微电子产业的规模和技术水平已成为衡量一个国家综合实力的重要标志之一,激光微技术将在这个领域发挥更大作用。我国在现代光制造发展方面,机遇与挑战并存,我们要抓住机遇,迎接新世纪光制造时代的到来。


返回上一步
打印此页
18214889090
浏览手机站